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Advances in automation are making it possible for a single operator to control multiple
unmanned vehicles. However, the complex nature of these teams presents a difficult and
exciting challenge for designers of human–unmanned vehicle systems. To build such systems
effectively, models must be developed that describe the behavior of the human–unmanned
vehicle team and that predict how alterations in team composition and system design will
affect the system’s overall performance. In this paper, we present a method for modeling
human–unmanned vehicle systems consisting of a single operator and multiple independent
unmanned vehicles. Via a case study, we demonstrate that the resulting models provide
an accurate description of observed human-unmanned vehicle systems. Additionally, we
demonstrate that the models can be used to predict how changes in the human-unmanned
vehicle interface and the unmanned vehicles’ autonomy alter the system’s performance.

I. Introduction

MANY important missions, including search and rescue, border security, and military operations, require human
reasoning to be combined with automated unmanned vehicle (UV) capabilities to form a synergistic human–UV

system. However, the design and implementation of such systems remains a difficult and challenging task. Challenges
related to the operators, the UVs, and the interactions between them must be addressed before human–UV systems
will realize their full potentials.

To understand and address these issues more fully, comprehensive models of human–UV systems should be
developed. These models should have two important capabilities. First, they should adequately describe the behavior
and performance of the team and the system as a whole. Second, these models should be able to accurately predict
the behavior and performance of the team as the environment, mission, or human–UV system changes.

Models with both descriptive and predictive abilities have a number of important uses. For example, such models
can improve the design processes of human–UV systems. As in any systems engineering process, test and evaluation
plays a critical role in fielding new technologies. In systems with significant human–automation interaction, testing
with representative users is expensive and time consuming. Thus, the development of a high-fidelity model of a
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human–UV system with both descriptive and predictive capabilities could streamline the test and evaluation cycle by
diagnosing causes of previous system failures and inefficiencies, and indicating how potential design modifications
will affect the behavior and performance of the system.

A model with both descriptive and predictive capabilities can also be used to determine successful team com-
positions. The composition of human–UV teams can potentially change dynamically both in number and type of
UVs due to changing mission assignments and resource availability. High-fidelity models can be used to ensure that
changes in team composition will not cause system performance to drop below acceptable levels. Furthermore, given
the team composition, these models can suggest which autonomy levels the UVs should employ.

As a step toward developing such high-fidelity and comprehensive models, we propose a method for modeling
human–UV systems. Due to the need to reduce manning in current human–UV systems [1], we focus on mod-
eling human–UV systems consisting of a single operator and multiple homogeneous and independent UVs. The
modeling method can be used to model systems employing any level of automation [2–5]. However, we assume that
the operator interacts with each UV in the team individually, rather than in a group [6].

The remainder of this paper proceeds as follows. In Sec. II, we define a stochastic model of human–UV systems
consisting of a single operator and multiple independent UVs. Section III describes how this stochastic model is
constructed using observational data. In Sec. IV, we describe a user study in which users controlled simulated UVs
to perform a search and rescue mission. Observational data from this study is used to model the human–UV team
and predict how changes in the system would alter its performance. In Sec. V, these predictions are compared with
observed results. We conclude and discuss future work in Sec. VI.

II. Modeling Human–UV Systems
The behavior of a human–UV system consisting of a single operator and multiple independent UVs can be

described with a set of models [7]. Each model describes the behavior of a particular aspect of the supervisory
control system given a characterization of the system’s state. In this paper, we use separate models to describe the
behaviors of the operator and the individual UVs in the system. When combined, these individual models form a
description of the behavior of the entire human–UV system. In this section, we describe the separate models and
how they are combined. We begin by defining useful notation and terminology.

A. Notation and Terminology
The models described in this paper are characterized by the notion of system state, which we define with the tuple

σ = (s, τ ). The first element, s, characterizes the state of each of the individual UVs in the team. Let S be the set of
possible UV states, and let si ∈ S be the state of UV i. Then, s = (s1, . . . , sN) is the joint state of a team of N UVs.
The second element of system state σ is mission time τ . Mission time, which is important to consider when modeling
time–critical operations, refers to the time elapsed since the team began performing its current mission. We denote
� as the set of possible system states.

B. Modeling UV Behavior
In previous work, the performance of a UV is modeled with respect to the temporal metrics of neglect time and

interaction time [8–10]. Neglect time is the expected amount of time that a UV maintains acceptable performance
levels in the absence of interactions (with the operator). Interaction time is the average amount of time an operator
must interact with a UV to restore or maintain desirable UV performance levels. Paired together, these metrics
identify the automated capability of a UV as well as the average frequency and duration of interactions necessary to
keep the UV’s performance above some threshold [10]. In particular, neglect time and interaction time can be used
to estimate the amount of time an operator must devote to a single UV [11] and the maximum number of UVs that a
single operator can effectively control (Fan-out) [9].

While neglect time and interaction time are valuable and informative metrics, they are not rich enough to sufficiently
describe and predict many relevant aspects of UV behavior [7]. One potential alternative is to model UV behavior with
two sets of random processes [7,10], which we call interaction impact (II) and neglect impact (NI), respectively.
These random processes describe a UV’s behavior or performance in the presence and absence of interactions,
respectively.
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In this paper, we model UV behavior with state transitions. Thus, the random processes II and NI describe
how a UV’s state changes over time. Formally, let σ ∈ � be the system state when the operator begins interacting
with UV i. The random process II(σ) stochastically models how UV i’s behavior changes its state si throughout
the duration of the interaction. The time variable of the process takes on all values in the interval [0, L], where L is
the length of the interaction and t = 0 corresponds to the time that the interaction began. Thus, for each t ∈ [0, L],
II(σ; t) is a random variable that specifies a probability distribution over UV states.

Likewise, we model the behavior of a UV in the absence of human attention with a random process. Let σ ∈ � be
the system’s state at the end of the UV’s last interaction. Then, the random process NI(σ) describes the UV’s state
transitions over time in the absence of additional interactions. Hence, for each t ∈ [0, ∞), where t = 0 corresponds
to the time that the UV’s last interaction ended, NI(σ; t) is a random variable that specifies a probability distribution
over UV states.

We note that the structures II(σ) and NI(σ) assume that UV behavior is Markovian with respect to the system
state σ at the beginning and end of the interaction, respectively. In large part, the accuracy of the Markov assumption
is dependent on the set of UV states (S). We note also that when the UVs perform independent tasks, the behavior
of each individual UV in the presence and absence of interactions is independent of the states of the other UVs in
the team. Since we assume independence in this paper, II(σ) = II(si, τ ) and NI(σ) = NI(si, τ ).

C. Modeling Operator Behavior
The operator plays a crucial role in the success of a human–UV system. Thus, a high-fidelity model of a human–

UV system must account for the behavior of the operator. Since II(σ) and NI(σ) are driven by human input, they
implicitly model human behavior during interactions. However, these structures do not account for how the operator
allocates attention to the various UVs in the team. Previous work has identified two important aspects of operator
attention allocation: selection strategy and switching time. The operator’s selection strategy refers to how the operator
prioritizes multiple tasks [12–14]. Switching time is the amount of time the operator spends determining which UV
to service [15,16].

As with UV behavior, temporal metrics can be used to measure operator attention allocation. One such set of
metrics involves the concept of wait times, or times that UVs spend in degraded performance states [13,17,18]. High
wait times typically indicate less effective prioritization schemes and longer switching times. Such metrics have been
used to augment fan-out predictions [17,18].

However, as with UV behavior, we model operator switching times (ST ) and selection strategies (SS) stochasti-
cally. Let ST (σ), where σ is the system state at the end of the previous interaction, be a random variable describing
the length of time the operator spends selecting a UV to service. The term ST (σ) is a combination of two kinds of
time periods. First, it consists of the time it takes for the operator to orient to the circumstances of the UVs in the
team and select a UV to service. Second, it consists of time periods in which the operator monitors the UVs’ progress
rather than servicing any particular UV. While it is often desirable to distinguish between these two time periods,
doing so requires knowledge of operator intentions, which we leave to future work.

Similarly, let SS(σ) be a random variable modeling the operator’s selection strategy given the system state σ.
This random variable specifies how likely the operator selects each UV in the team. More specifically, since a UV is
characterized by its state, SS(σ) is a probability distribution over UV states.

We note that operator behavior in human–UV systems is driven by a number of important cognitive processes
and limitations. These processes and limitations include, among others, operator workload [19], operator utilization
[20–22], operator trust in automation [23,24], and operator situation awareness [25,26]. Accurate models of ST (σ),
SS(σ), and to some extent II(σ), implicitly account for these cognitive phenomena.

D. Comprehensive Model
Since the structures II(σ), NI(σ), ST (σ), and SS(σ) are each characterized by system state σ, they can be

combined via a discrete event simulation to estimate the behavior of the human–UV system as a whole. Thus, given
accurate estimates of these four structures, a high-fidelity description of the human–UV system can be constructed.
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III. Modeling Human–UV Teams with Observational Data
Once a human–UV system is implemented and deployed, observational data can be used to estimate II(σ),

NI(σ), ST (σ), and SS(σ) for all σ ∈ �. We describe how such estimates can be formed in this section. We also
formalize the discrete event simulation used to simulate the behavior of the complete human–UV system using these
model estimates.

A. Constructing the Individual Behavioral Models
Observational data required to model II(σ), NI(σ), ST (σ), and SS(σ) is exemplified in Table 1, which shows

the data log of a hypothetical three-robot team during mission times τ ∈ [0, 17]. At discrete time steps of unit length,
the system records the UV that the operator was servicing during that time (row labeled ‘Operator’), and the current
state of each UV in the team (rows labeled “UV 1”, “UV 2”, and “UV 3”, respectively). For example, at time period
τ = 2, the table shows that the operator was servicing UV 1, UV 1 was in state s2, and UVs 2 and 3 were both in
state s1.

From this data, samples of interaction impact, neglect impact, operator switching time, and operator selection
strategies are extracted. Probability distributions over these various data samples are then derived to approximate
II(σ), NI(σ), ST (σ), and SS(σ) for each σ ∈ �.

1. Extracting Data Samples
Regardless of its type (II, NI, ST, and SS), each sample x extracted from observational data is a tuple x = (xσ, xo),

where xσ is the system state of the sample, and xo is the outcome. Since the outcome xo of the sample has a different
form for each sample type, we discuss each sample type separately.

Samples of type II. Let �II denote the set of samples of interaction impact extracted from the observational
data. For each sample x ∈ �II , xσ = (xsi , xτ ) is the system state (assuming UVs perform independent tasks) at the
beginning of an interaction with UV i. The outcome xo of each of these samples is the sequence of states visited
by the UV during the interaction. For example, Table 2 shows the four samples of interaction impact, one for each
interaction, in the hypothetical data log of Table 1. The first entry of Table 2 shows the sample corresponding to
the operator’s interactions with UV 1 during time τ ∈ [0, 2]. Thus, the sample’s system state consists of the state of
UV 1 (s1), and the mission time τ = 0. The outcome of the sample is the sequence of states that UV 1 visited during
the duration of the interaction. Thus, xo is the sequence (s1, s2, s2).

Samples of type NI. Corresponding to each sample in the set �II is a sample of neglect impact, or a sample of the
UV’s behavior in the absence of interactions. Let �NI denote the set of samples of neglect impact extracted from
the observational data. The system state xσ = (xsi , xτ ) for each sample x ∈ �NI is the system’s state at the end of

Table 1 Hypothetical observational data for a three-UV team for the mission times τ ∈ [0, 17]
Time (τ ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Operator 1 1 1 3 3 1 1 1 1 2 2
UV 1 s1 s2 s2 s2 s2 s2 s3 s3 s3 s3 s4 s4 s2 s2 s2 s3 s4 s4

UV 2 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s3 s3

UV 3 s1 s1 s1 s1 s1 s1 s2 s2 s2 s3 s3 s3 s3 s4 s4 s3 s3 s4

For each discrete time period τ , the system records the UV that the operate was servicing as well as the state of each UV.

Table 2 The set of samples of interaction impact (�II ) derived from
the hypothetical data log shown in Table 1

System state (xσ)

UV xsi xτ Outcome (xo): sequence of states

1 s1 0 s1, s2, s2

3 s1 5 s1, s2

1 s3 9 s3, s4, s4, s2

2 s1 15 s1, s3
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the UV’s last interaction. The outcome xo for these samples is the sequence of states the UV visits thereafter in the
absence of interactions.

Table 3 shows the four samples of neglect impact extracted from the hypothetical data log in Table 1. The first
entry of Table 3 shows UV 1’s behavior after it is neglected by the operator at time τ = 3. At this time, xsi = s2,
and the sequence of states visited by UV 1 thereafter (for τ ∈ [3, 9]) was xo = (s2, s2, s2, s3, s3, s3). At time τ = 9,
however, the sequence ends in the data due to the operator again interacting with UV 1. Since a sequence of neglect
impact is theoretically infinite, it may sometimes be necessary to approximate the missing portion of the sequence.

This can be done in two ways. First, knowledge of the UV’s position and trajectory in the world as well as its
behavioral logic, could be used to estimate the missing portion of the sequence via simulation. Second, existing
samples in �NI for which the UV visited similar states can be used to approximate what the UV’s state would
have been in the absence of interactions. For example, the ending subsequence of the first sample (i.e., s2, s3, s3, s3)
is present in the outcome of the second sample. Thus, the subsequent sequence of UV states shown in the second
sample’s outcome (i.e., s3, s4, s4, s3, s3, s4, . . .) could be used to approximate the missing portion of the first sample.

Samples of type ST. After each logged interaction is a sample of operator switching time. Let �ST be the set of
switching time samples. The system state xσ = (xs, xτ ) of each sample x ∈ �ST is the system’s state at the end of
the last interaction. The outcome xo is the time elapsed between the end of the previous interaction and the beginning
of the new interaction. Table 4 shows �ST for the hypothetical data log (Table 1). For example, the first entry in the
table shows that after interacting with UV 1 during time τ ∈ [0, 2], the operator took two time units to select UV 3.
Thus, xo = 2 for this sample.

Samples of type SS. Each time the operator selects a UV to service, we obtain a sample of the operator’s selection
strategy. The system state xσ = (xs, xτ ) of these samples, which are gathered in the set �SS , is the system state at
the time the operator begins servicing the UV. The outcome xo of the samples is the state of the UV the operator
services. Table 5 shows the set of samples of the operator’s selection strategy extracted from the hypothetical data
log (Table 1).

2. Approximating the Stochastic Models from Data Samples
The structures II(σ), NI(σ), ST (σ), and SS(σ) can be approximated for all σ ∈ � by forming probability

distributions over the outcomes xo of the samples in the sets �II , �NI , �ST , and �SS , respectively. These
probability distributions are based on the distance between each sample’s system state xσ and the target system
state σ. Formally, the probability that the outcome xo from some sample x ∈ � defines the behavior of a UV or the

Table 3 The set of samples of neglect impact (�NI ) derived from the
hypothetical data log shown in Table 1

System state (xσ)

UV xsi xτ Outcome (xo): sequence of states

1 s2 3 s2, s2, s2, s3, s3, s3

3 s2 7 s2, s2, s3, s3, s3, s3, s4, s4, s3, s3, s4, . . .

1 s2 13 s2, s2, s3, s4, s4, . . .

2 s3 17 s3, . . .

Table 4 The set of samples �ST of operator switching time’s
extracted from the hypothetical data in Table 1

System state (xσ)

xs xτ Outcome (xo): switching time

(s2, s1, s1) 3 2
(s3, s1, s2) 7 2
(s2, s1, s4) 13 3
(s4, s3, s4) 17 Not available
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Table 5 The set of samples �SS for operator selection strategies
extracted from the hypothetical data in Table 1

System state (xσ)

xs xτ Outcome (xo): state of selected UV

(s1, s1, s1) 0 s1

(s2, s1, s1) 5 s1

(s3, s1, s3) 9 s3

(s3, s1, s3) 15 s1

operator (as the case may be) is given by

Pr(xo|σ, �) = wT (x|σ)∑
y∈� wT (y|σ)

(1)

where wT (x|σ) is the weight of sample x given the system state σ and the type T ∈ {II, NI, ST, SS} of samples in �.
The weight wT (x|σ) is computed differently depending on the sample type T . To compute probability distributions

to estimate II(σ) and NI(σ), the weights wII(x|σ) and wNI(x|σ) are given by

wII(x|σ) = wNI(x|σ) = f (xτ − τ) · Isi
(xsi ) (2)

The function f (xτ − τ) produces values in the range [0, 1], and returns higher values when xτ − τ is small. The
indicator function Isi

(xsi ) returns unity if si = xsi , and zero otherwise. Thus, in words, the weight of sample x ∈ �II

is zero if the target UV state si is equal to the sample’s UV state xsi . Otherwise, the weight of x is a function of the
proximity of the target mission time τ to the sample’s mission time xτ .

Calculating wST(x|σ) is slightly more involved than calculating wII(x|σ) and wNI(x|σ), since the system state xσ

of each sample x ∈ �ST includes the joint state xs rather then just xsi . Thus, to determine, wST(x|σ), the similarity
between s and xs must also be determined. Let Vx be the set of permutation vectors of xs and let vxi be the ith element
of the vector vx ∈ Vx. Then, the similarity between the joint states s and xs is given by

�(s, xs) = min
vx∈Vx

n∏
i=1

φ(si, v
xi ) (3)

where φ(si, v
xi ) ∈ [0, 1] is the similarity between the individual UV states si and vxi , and φ(si, v

xi ) = 1 when
si = vxi . In words, the similarity between the joint states s and xs is the product of the similarities between the
individual UV states when the elements (or states) in xs are reordered to form the closest correspondence between
the two vectors.

Thus, the weight of a sample x ∈ �ST is given by

wST(x|σ) = f (xτ − τ) · �(s, xs) (4)

where f (xτ − τ) is the same function as in Eq. (2).
The weight wSS(x|σ) is computed similarly to wST(x|σ) except that only samples with an outcome xo that matches

the state of one of the UVs in the target joint state s is given nonzero probability. Thus, wSS(x|σ) is given by

wSS(x|σ) =
{

�(s, xs) · f (xτ − τ) if ∃si ∈ {s} : si = xo

0 otherwise
(5)

where {s} denotes the set of individual UV states contained in s.
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Fig. 1 Discrete event simulation for simulating human–UV system behavior from data.

B. Combining the Behavioral Models
The sample sets �II , �NI , �ST , and �SS , and the probability distributions over these samples sets are used

by a discrete event simulation to model the human–UV system. In this discrete event simulation, detailed in Fig. 1,
the behavior of each UV k is defined by a sequence of states χk selected from the outcomes of �II (when receiving
attention from the simulated operator) and �NI (when neglected by the simulated operator). The variable ck denotes
the current position of UV k in the sequence χk .

In step 3a of Fig. 1, operator switching time is simulated by selecting a sample from �ST . During this time, the
UVs in the system behave according to their current state sequences χk (step 3b). Once the switching time elapses,
the simulated operator selects UV r to service (step 3c). A new state sequence from �II is selected to model UV r’s
behavior during this interaction (step 3d). When the interaction is completed, a new state sequence for UV r is
selected from �NI (step 3f). The process then repeats.

In subsequent sections, we evaluate the ability of this discrete event simulation to model the performance of an
observed human–UV system. Additionally, we use the discrete event simulation to predict how modifications to this
observed system alter the system’s performance.

C. Implementation Specific Modeling Parameters
While this modeling method can be used to model many human–UV systems, it requires several mission- and

team-specific specifications. In particular, a set of UV states must be enumerated. As in any statistical model that uses
the concept of state, the set of UV states is essential to the fidelity of the model. A good set of states must balances
two objectives. First, if two situations cause, or should cause, different behaviors from either the operator or a UV in
the team, they should be marked as different states. Second, a good set of UV states should be as small as possible in
order to better leverage sparse data sets. As the size of the state space grows, the amount of data necessary to develop
a high-fidelity model of the system will also increase substantially.

In addition to an enumeration of UV states, the model requires a state similarity metric (Eq. (3)) and a time-
weighting function f (·).

IV. Experimental Case Study
To validate the modeling method described in the previous sections, we conducted a user study of a human–

UV system. In this section, we overview the software test-bed and experimental procedure used in the study, and
specify the system- and mission-specific modeling parameters. In the next section, we demonstrate the descriptive
and predictive abilities of models constructed from the observational data of this system.
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A. Software Test-bed
The user study was performed using RESCU (Research Environment for Supervisory Control of Unmanned-

Vehicles) [7], a software test-bed in which a participant directs a team of simulated UVs in a search and rescue
mission. A simulated UV environment was chosen since current UV capabilities do not allow for rapid prototyping
of systems that allow a single human to control multiple UVs simultaneously. Furthermore, while simulated UVs
behave differently than real UVs in many respects, the modeling method described in this paper is the same regardless
of whether UVs are simulated or real.

We now overview RESCU in three parts: the team mission, the user interface, and the UVs’ behaviors. Additional
details about RESCU are provided in previous work [7].

1. Mission
Across many mission types, an operator of a human–UV system commonly assists in performing a set of abstract

tasks. These abstract tasks include mission planning and re-planning, UV path planning and re-planning, UV
monitoring, sensor interpretation, and target designation. RESCU captures each of these tasks in a time-critical
mission.

In RESCU, an operator (the study participant) directs a team of simulated UVs to collect objects from a building
over an eight-minute time period. At the end of the eight minutes, the building “blows up”, destroying all UVs and
objects left in it. Thus, in addition to collecting as many objects as possible, the operator must also ensure that all
UVs are out of the building when time expires. Specifically, operators are asked to maximize the following objective
function

Score = ObjectsCollected − UVsLost (6)

where ObjectsCollected is the number of objects collected from the building during the session and UVsLost is
the number of UVs remaining in the building when time expires.

An object is collected from the building using the following three-step process:
1) A UV moves to the location of an object in the building. This step requires the operator to be involved at

some level in mission planning, target designation, path planning and re-planning, and UV monitoring.
2) The UV picks up the object. In real-world systems, the operator would likely need to perform particular

tasks to assist the UV in this process, such as identify the object from imagery. This burden on the operator
is emulated in RESCU by requiring the operator to find a U.S. city on a map.

3) The UV carries the object out of the building via one of two exits. This step requires the operator to monitor
the UV and assist in path planning and re-planning.

At the beginning of a RESCU mission, the UVs are positioned outside one of two entrances of the building, and
the objects are spread randomly throughout the building. The human–UV team can only see the positions of six of the
objects initially. In each minute of the session, the locations of two additional objects are revealed. Additionally, the
map of the building is initially unknown. The UVs create a shared map of the building as they move about it.

2. User Interface
The user interface for these RESCU experiments was the two-screen display shown in Fig. 2. The map of the

building was displayed on the left screen, along with the positions of the UVs and the known objects in the building.
The right screen displayed the map of the United States operators used to locate cities to assist UVs in “picking
up” objects. The operator controlled a single UV at a time, which he or she selected by clicking a button on the
interface corresponding to that UV. Once the operator selected the UV, he or she directed the UV by designating a
goal location and modifying the UV’s planned path to the goal. To designate a goal, the operator dragged the goal
icon corresponding to the UV in question to the desired location. The UV then generated and displayed the path it
intended to follow. The operator could modify this path with the mouse.

Two different interface modes were used. In the first mode, the operator was provided no assistance in finding
U.S. cities on the map. This mode represents current UV systems in which operators must manually interpret sensor
information to identify and track objects and landmarks. In the second mode, the operator was assisted by an automated
visioning system (AVS), designed to model potential real-world systems that use computer vision to help identify
and track objects and landmarks from imagery. The AVS suggested two cities to the operator by superimposing
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Fig. 2 The two-screen RESCU user interface.

blinking red boxes on the map of the United States to mark the suggested cities. The suggestions made by the AVS
were correct about 70–75% of the time.

3. UV Behavior
The UVs used the well-known Dijkstra’s algorithm for path planning. However, since the map of the building

was incomplete, the UVs had to decide, using the techniques described in pervious work [7], between exploring the
unknown portions of the building and taking a known, possibly longer, path. The resulting path planning algorithm
allowed the UVs to effectively traverse the building in most situations. However, as in real-world systems, UV
behavior was not always ideal. As a result, operators sometimes found it necessary to correct the UV’s plans and
actions.

Two different UV autonomy modes were used in the study. In the first mode, the operator manually assigned
all UV goal destinations. If the operator did not provide a goal for a UV, it remained idle and did not move.
This mode represents the current state-of-the-art, in which the UV used autonomous capabilities, such as “fly-by-
wire” technologies, to navigate to human-designated locations. In the second mode, which represents potential UV
capabilities of the future, a UV automatically selected its own goal destination in some situations. The UVs used the
following rules for generating goal destinations:

1) An idle UV that was carrying an object automatically selected the nearest perceived exit for its goal
destination.

2) An idle UV not carrying an object automatically selected the nearest perceived unassigned object for its goal
destination.

3) In the last minute of the session, each UV automatically selected the nearest perceived exit for its goal
destination.

A management-by-exception (MBE) level of automation [2] was used to allow the operator to over-rule the selections
made by the UVs. The UV waited 15 s before executing the selection to allow the operator to override it. We refer to
this mode as MBE autonomy.

B. Experimental Procedure
The experiment was a 4 (decision support) × 4 (UV team size) mixed design study. Decision support was a

between–subjects factor, where each participant was assigned a specific level. The four levels of decision support
were as follows:

1) noDS: The human–UV system was not equipped with the AVS or MBE autonomy.
2) AVS: The human–UV system was equipped with the AVS but not MBE autonomy.
3) MBE: The human–UV system was equipped with MBE autonomy but not the AVS.
4) AVS–MBE: The human–UV system was equipped with the AVS and MBE autonomy.
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The noDS factor level represents a system employing current UV autonomy and interface characteristics. In these
systems, the mission is primarily human-guided and UVs use autonomous capabilities to navigate to human-specified
locations. The other three levels represent possible future systems that leverage more advanced autonomy and
intelligent interface technologies.

UV team size was a within-subjects factor, where each participant performed the search and rescue mission for
team sizes of two, four, six, and eight UVs. The order of team size presented to each participant was randomized and
counter-balanced throughout the study.

Each participant was randomly assigned a level of decision support and trained on all aspects of the system.
The participant then completed three comprehensive practice sessions, as data showed that operator performance
plateaued after three sessions. Following these practice sessions, each participant performed four test sessions, each
with a different team size. After the sessions, participants answered questions about their experience in the study.
Each participant was paid $10 per hour; the highest scorer also received a $100 gift certificate. Sixty-four participants
between the ages of 18 and 49 participated in the study, sixteen in each level.

C. Model Parameters
As outlined in Sec. III.C, our modeling method requires several-situation specific parameters and functions. We

now define these values for RESCU, including a set of UV states, a similarity metric, and a time-weighting function
f (·).

1. A Set of UV States
The set of UV states should distinguish between situations that evoke, or should evoke, different behaviors from

the operator or the UVs in the team. We used statistical analysis of participants’ observed selection strategies as well
as their post-experiment comments to identify 22 distinct UV states. Figure 3 shows a decision tree that defines these
states.

Figure 3 shows that a number of features were used to determine a UV’s state. These features included whether
a UV was searching for an object, exiting the building, waiting for operator help to “pick up” an object, or waiting
for a goal designation from the operator. A moving UV’s state was further distinguished by features such as whether
or not the UV was following a known path to the goal, and if another unassigned object was closer to the UV than
its current goal destination.

2. A State Similarity Metric
The similarity function φ(si, sj ), which defines the similarity of state si to state sj (see Eq. (3)), was determined

from the decision tree shown in Fig. 3. In the decision tree, features that had a higher impact, as determined statistically,
on human and UV behavior are higher in the tree. Thus, states in the same subtree tend to have a higher similarity
than those that are not in the same subtree. This point can be exploited to construct a similarity metric.

Fig. 3 The decision tree used to define a UV’s state in the user study.
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Formally, let g(si, sj ) denote the length of the path in the decision tree from si to the nearest common ancestor of
si and sj . For example, g(s1, s2) = 1 since the states s1 and s2 share the same parent, whereas, g(s1, s5) = 3 since
the nearest common ancestor is three levels up the tree. Then, φ(si, sj ) is given by

φ(si, sj ) = 1

g(si, sj )c
(7)

where c is some positive integer that controls the sensitivity of the metric. Increasing c decreases the similarities
between states.

3. A Time-Weighting Function f (·)
Recall that the time-weighting function f (·) is used to weight a sample based on mission time. We use a function

proportional to a truncated Gaussian for f (·), namely

f (xτ − τ) =
⎧⎨
⎩exp

(
− (xτ − τ)2

2ν2

)
if (xτ − τ) < W

0 otherwise
(8)

where ν and W are positive constants. Due to the time-critical nature of RESCU, we chose to truncate the Gaussian
function (with W ) so that a sample’s weight was positive only if xτ was close to τ .

V. Results
In this section, we discuss the results of the user study and use these results to evaluate our modeling method’s

ability to describe and predict the performance of human–UV systems. We first summarize the observed performance
of the various human–UV systems observed in the user study. Next, we model the noDS human–UV systems using
observational data from subjects that commanded the noDS systems in the study. Finally, we predict the performance
of the AVS, MBE, and AVS–MBE systems from these models, and compare these predictions to the observed results
in the study.

A. Observed System Performance
In the user study, system performance was determined by the number of objects collected and the number of UVs

lost, depicted in Fig. 4. These experimental results show several trends. First, the number of objects collected by
the teams tended to increase as the size of the team increased. This trend is validated statistically. A 2 × 2 analysis
of variance (ANOVA), with team size and decision support as the factors, shows that team size had a statistically
significant impact on the number of objects collected (F(3, 180) = 92.65, p < 0.001). Tukey’s pairwise comparisons
between systems with different team sizes show a statistically significant difference in number of objects collected

Fig. 4 Mean number of objects collected (left) and UVs lost (right) observed in each experimental condition.
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between all team sizes (p < 0.001 in each comparison) except six- and eight-UV teams (p = 0.663). Thus, increasing
the team size up to six UVs increased the number of objects the systems collected.

A second trend visible in Fig. 4 is that the number of UVs lost also increased with team size (F(3, 180) = 19.27,
p < 0.001). Tukey’s pairwise comparisons show similar trends to those seen in number of objects collected. Four-UV
teams lost more UVs than two-UV teams (p = 0.003), six- and eight-UV teams lost more UVs than four-UV teams
(p = 0.033 and p = 0.001, respectively), but there was not a statistical difference in number of UVs lost between
six- and eight-UV teams. Thus, while increasing the team size caused an increase in the number of objects collected,
it also increased the number of UVs that the system lost.

Figure 4 also shows that AVS support and MBE autonomy increased the number of objects the system collected,
especially for larger team sizes. The ANOVA showed that the level of decision support had a statistically significant
impact on number of objects collected (F(3, 60) = 3.616, p = 0.018), but not on the number of UVs lost (F(3, 60) =
0.54, p = 0.655). Tukey’s pairwise comparisons between the four levels of decision support show a statistical
difference between the number of objects collected by the noDS and AVS–MBE systems (p = 0.013), but not
between any of the other pairings. These results, coupled with the trends shown in the figure, suggest that the AVS
and the MBE enhancements both had a positive effect on the number of objects collected by the system, though only
the combined enhancements (AVS–MBE) produced a statistically significant improvement in the study. Thus, the
AVS–MBE level of decision support with six or eight UVs yields the highest system performance of all the systems
evaluated in the user study.

The user study provides a rich data set for human–UV interactions in simulated future systems. Given that the
noDS system represents the current state-of-the-art (primarily human-guided), this system can be modeled from
observational data. This model can then predict the effects of future system enhancements, such as those present
in the AVS, MBE, and AVS–MBE systems. Thus, in the remainder of this section, we analyze the ability of the
modeling method described in this paper to make such predictions. We use the observational data from the noDS
factor level to model the noDS system. We then use this model to predict the performance of the AVS-, MBE-,
and AVS–MBE-enhanced systems without the benefit of observing them. We then compare these predictions to the
results of the user study (Fig. 4).

B. Modeling the Observed System
We constructed four separate models, one corresponding to each team size, from observational data of the noDS

human–UV systems. Using the least mean squared error criteria, we set the parameters found in Eqs. (7) and (8) so
that c = 10, ν = 10 s, and W = 100 s. The discrete event simulation outlined in Fig. 1 was then used to simulate the
noDS human–UV system.

Figure 5 compares the average number of objects collected and UVs lost of the noDS system in the user study
(error bars represent a 95% confidence interval on the mean) to the estimates made by the models. These estimates
were found by taking the average performance of 5000 simulations of the discrete event simulation shown in Fig. 1.

Fig. 5 Comparison of observed performance of the noDS human–UV systems to model estimates.
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The models’ estimates of the number of objects collected are nearly identical to observed performance. Furthermore,
the models’estimates of the number of UVs lost are also reasonably good. For two- and four-UV teams, the estimates
are almost identical to the observed values. However, for six- and eight-UV teams, the model slightly over-estimates
the number of UVs lost, though estimates are still well within the 95% confidence intervals.

The cause for the slight inaccuracies in estimating UVs lost for larger teams appears to be tied to small inaccuracies
in the models of operator selection strategies. To avoid losing UVs in RESCU, an operator is sometimes required
to make precise time-critical decisions in order to ensure that UVs exit the building before time expires, whereas
the same time-critical precision is not required to collect objects. As the joint state space becomes larger with larger
teams, the relatively small number of data samples compared to the size of the joint state space makes it difficult to
model operator strategies with sufficient precision. As a result, the model slightly over-estimates the number of UVs
lost in larger UV teams.

Despite these small inaccuracies, the estimates are, overall, reasonably good. The models effectively describe the
observed system. However, these results do not demonstrate predictive ability since the model is only duplicating
observed results. To be predictive, the model must be able to predict the performance of unobserved systems.

C. Predicting the Effects of System Design Modifications
We now evaluate the models’ ability to predict the performance of the system with the AVS, MBE, and AVS–MBE

enhancements.

1. Predicting the Effects of the AVS Support
To predict how the AVS enhancement would change system performance, we must determine the aspects of

the team that would be affected by the AVS and how they would be changed. These changes must be reflected in
the individual samples, which entails either deriving a new set of samples, or editing the existing samples. We use the
latter approach in this paper.

Since the AVS affects human–UV interactions, it will mostly affect II; we assume that the other aspects of the
system are left unchanged. To capture the change in II induced by the AVS enhancement, we edit the outcome xo

of each sample x ∈ �II in which the operator assisted a UV in “picking up” on object by locating a city on the map
of the United States. In these samples, the amount of time taken to identify the city should be altered to reflect the
change induced by the AVS support.

For example, consider the following outcome of a hypothetical sample of interaction impact:

s6, s6, s6, s8, s8, s8, s8, s8, s8, s8, s8, s8, s8, s8, s3, s3, s3, s18, s18

From the state tree shown in Fig. 3, we can deduce that state s8 corresponds to situations in which the operator and
the UV are engaged in “picking up” an object. In the state transition sequence, this process takes eleven time units,
beginning with the fourth element of the sequence and ending with the 14th element of the sequence. To estimate
the effects of the AVS support, we remove this subsequence and replace it with a subsequence reflecting the amount
of time the process would take with the AVS support. For example, if we have cause to believe that it would take the
operator just six time units with the AVS support, then the edited sequence would be

s6, s6, s6, s8, s8, s8, s8, s8, s8, s3, s3, s3, s18, s18

Note, however, that since the effects of the AVS support are not completely known a priori, we must estimate
what they might be, or evaluate the proposed AVS. We estimated the length of time it takes operators to locate a city
in a separate evaluation of the AVS support, and substituted these times into the appropriate samples in �II . On
average, we observed that the AVS support reduced the time it took operators to locate the city by approximately 5 s.

After editing the samples in this way, we simulated the AVS-enhanced system using the discrete event simulation
outlined in Fig. 1. We then adjusted the simulation’s predictions of system performance to account for the initial
errors present in the model. Specifically, we multiplied the simulation’s predictions by the ratio of the observed
values to the model estimates in Fig. 5. The resulting predictions are compared to the observed performance in the
user study in Fig. 6. In this and subsequent figures, error bars represent a 95% confidence interval on the mean. For
each team size, the predictions are reasonably accurate for both number of objects collected and UVs lost, as all
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Fig. 6 Comparison of model predictions to observed data from the AVS system.

predictions fall within the 95% confidence intervals. Thus, the models effectively predicted the affects of the AVS
enhancement.

2. Predicting the Effects of the MBE Autonomy
The MBE autonomy alters a UV’s behavior in the absence of interactions. Thus, whereas theAVS support primarily

affected II, the MBE autonomy primarily affects NI. As such, to simulate the effects of the MBE autonomy, we
must modify the samples in �NI to reflect this new behavior.

To estimate how each sample x ∈ �NI would change due to the MBE enhancement, we must first identify when
MBE autonomy would cause changes in each sample’s outcome, or state transition sequence. This is easily done
using the three rules outlined in Sec. IV.A.3. For example, consider the following state transition sequence:

s19, s19, s19, s2, s2, s2, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, . . .

Using the decision tree shown in Fig. 3, we can deduce that this sequence corresponds to the situation in which a
UV finishes carrying an object out of the building and then waits (in state s1) to be given a new goal destination.
Given the second rule of MBE autonomy, which specifies that the UV will automatically set a new goal for itself
after waiting in state s1 for 15 s, we can infer that the MBE autonomy would cause the UV to leave state s1 and
re-enter the building after 15 time units (assuming a time unit equals 1 s).

Second, we must determine how to change sequences that would be altered by the MBE autonomy. This is
achieved by identifying sequences from �NI that corresponded to times in which the operator had, in the previous
interaction, assigned a UV in state s1 a new goal destination. These existing sequences can then replace the portions
of the sequences we wish to edit. Thus, continuing our example, the state transition sequence could become:

s19, s19, s19, s2, s2, s2, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s11, s11, s11, . . .

which shows the UV re-entering the building in search of another object after waiting for 15 time units.
After modifying the samples in �NI as described, we predicted the performance of the MBE-enhanced system

using the discrete event simulation (average of 5000 simulations). Figure 7 compares these predictions to the perfor-
mance of the MBE-enhanced system we observed in the user study. With respect to the number of objects the system
collected, the figure shows that the model makes reasonably good predictions for each team size, as all predictions
fall within the 95% confidence interval. However, the predictions for UVs lost, though accurate for six- and eight-UV
teams, are low for smaller UV teams. This is particularly true of the two-UV case, in which the prediction is outside
the 95% confidence interval. While the model predicted that the MBE autonomy would reduce the number of UVs
lost for smaller teams, they were actually higher in the user study. While this trend is not statistically significant,
one possible, yet unsubstantiated, explanation for this unexpected result is that operator’s over-trusted the MBE
autonomy. Since the model does not explicitly account for operator trust, it would be unable to predict this effect.
We leave further analysis of this point to future work.
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Fig. 7 Comparison of model predictions to observed data from the MBE system.

3. Predicting the Effects of the AVS–MBE Enhancement
The AVS–MBE enhanced system can be simulated by combining the changes in the models used to simulate

the AVS- and MBE-enhancements individually. Figure 8 compares predictions of system performance made by the
models against those observed in the user study. Once again, the predictions made by the model are reasonable,
though not perfect. For each team size, the predictions of objects collected are higher than the observed results, while
the predictions of UVs lost are lower than the observed results. However, with the exception of objects collected
in the four-UV condition, all predictions are with the 95% confidence interval. Thus, the models were reasonably
effective in predicting the effects of multiple design changes.

D. Implications for Human–UV System Design
The results in this section demonstrate that the modeling method presented in this paper can be used to both

describe and predict the performance of human–UV systems under certain assumptions (more on this in Section VI).
Thus, it can be useful to designers of human–UV systems. For example, consider the situation in which the noDS
system has been designed, implemented, and deployed. Since this system often loses a substantial number of UVs
and collects, on average, no more than half of the total possible objects (Fig. 4), it is desirable to know how to alter
the system to improve its performance.

The predicted effects of the AVS, MBE, and AVS–MBE enhancements for various metrics of system performance
are shown together in Fig. 9. The predictions identify several key insights into the AVS, MBE, and AVS–MBE
enhancements. First, the predictions indicate that each of the design enhancements would increase the effectiveness

Fig. 8 Comparison of model predictions to observed data from the AVS–MBE system.
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Fig. 9 Comparison of the predicted performance of various design improvements.

of the system. Implemented alone, the models predict that the AVS and MBE enhancements would produce moderate
improvements for each team size as shown in Table 6. While the MBE and AVS enhancements are predicted to have
similar impact on the system’s performance in larger teams, the AVS enhancement would be more effective for two-
and four-UV teams. This predicted trend is verified by the outcomes of the user study (Fig. 4).

However, these predicted increases in system score are potentially misleading, as system designers must also
consider the costs of performance increases. Since increases in UV capabilities would likely increase the UVs’ cost,
a system designer must also alter the system objective function from Eq. (6) to

Score = ObjectsCollected − (UVCostRatio · UVsLost) (9)

Table 6 Predicted percentage of performance increase in system score (Eq. (6))
for the various system enhancements

System 2 UVs(%) 4 UVs(%) 6 UVs(%) 8 UVs(%)

AVS 15 21 16 26
MBE 4 10 18 23
AVS–MBE 16 33 41 59
AVS–MBE (2 × UV cost) 9 24 27 36
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Fig. 10 Predicted system score of the AVS–MBE enhanced system for various UVCostRatio’s.

where UVCostRatio is the ratio of the cost of a UV equipped with AVS and MBE capabilities to the cost of a UV in
the original implementation (noDS).

Figure 10 shows the effects that different values of UVCostRatio have on the predicted system scores of the AVS–
MBE-enhanced system. Even when the cost of a UV is doubled, the model predicts that the AVS–MBE-enhancement
would still increase the system score substantially for each team size (Table 6).

VI. Conclusions and Future Work
In this paper, we have described a method for modeling human–UV systems consisting of a single operator

and multiple UVs. In this model, the stochastic behavior of both the operator and the UVs are constructed from
observational data. Together, these stochastic models describe the complete human–UV system. Furthermore, via
user study, we demonstrated that they can be used to predict the affects of alterations in the human–UV systems,
such as changes to the human–UV interface or UV autonomy levels. These results demonstrate that this modeling
method can have significant implications for the design and implementation of future human–UV systems.

While these results are encouraging, the modeling method has a number of limitations that limit its generality, each
of which should be addressed in future work. First, when predicting the effects of design changes, the model assumes
that alterations in the system will have limited impact on other aspects of the human–UV system. For example, in
Sec. V, we assumed that the AVS support would only affect interaction impact and that the MBE autonomy would
only alter neglect impact. While verifying the correctness of these assumptions is difficult in our study due to the
limited amount of observational data in conjunction with a large state space, the accuracy of the models’ predictions
indicate that these assumptions are reasonably good. However, it is reasonable to assume that these assumptions
would fail for other design modifications, particularly those that give rise to cognitive phenomena related to operator
workload [19], operator utilization [20–22], operator trust in automation [23,24], and operator situation awareness
[25,26].

Second, the model we presented in this paper assumes that the human–UV team consists of a single operator
and multiple UVs performing independent tasks. However, many systems require that UVs cooperate [27], which
introduces a level of dependence not accounted for in this model. Third, in this paper, we assumed that the operator
interacted with a single UV at a time. The model could potentially be extended to allow the operator to interact with
groups of UVs [6,28].

Despite these limitations, the modeling method presented in this paper shows significant promise for modeling
complex human–UV systems for both descriptive and predictive purposes.
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